PNP Silicon Expitaxial Planar Transistor

for switching and amplifier applications. Especially suitable for AF-driver stages and low-power output stages.

These types are also available subdivided into three groups $-16,-25$ and -40 , according to their DC current gain. As complementary types, the NPN transistors BC337 and BC338 are recommended.

On special request, these transistors can be manufactured in different pin configurations. Please refer to the "TO-92 TRANSISTOR PACKAGE OUTLINE" on page 80 for the available pin options.

TO-92 Plastic Package
Weight approx. 0.18 g
Dimensions in mm

Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{a}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\right.$)

		Symbol	Value	Unit
Collector Emitter Voltage	HN / BC 327 HN / BC 328	$\begin{aligned} & -\mathrm{V}_{\mathrm{CES}} \\ & -\mathrm{V}_{\mathrm{CES}} \end{aligned}$	$\begin{aligned} & 50 \\ & 30 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Collector Emitter Voltage	HN / BC 327 HN / BC 328	$\begin{aligned} & -V_{\text {CEO }} \\ & -V_{\mathrm{CEO}} \end{aligned}$	$\begin{aligned} & 45 \\ & 25 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
Emitter Base Voltage		$-\mathrm{V}_{\text {Ebo }}$	5	V
Collector Current		I_{c}	800	mA
Peak Collector Current		I_{CM}	1	A
Base Current		I_{B}	100	mA
Power Dissipation at $\mathrm{Tamb}=25^{\circ} \mathrm{C}$		$\mathrm{P}_{10 \mathrm{t}}$	6251)	mW
Junction Temperature		T_{1}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		T_{s}	-65 to + 150	${ }^{\circ} \mathrm{C}$
${ }^{\text {1 }}$ Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case				

G S P FORM A AVAILABLE

$\frac{3}{90} 9002.9$

HN / BC 327/328

Characteristics at $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$

HN / BC 327/328

Collector current
versus base-emitter voltage

Pulse thermal resistance versus pulse duration
Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

Collector-emitter cutoff current versus ambient temperature

Common emitter

collector characteristics

Common emitter collector characteristics

Common emitter collector characteristics

Base saturation voltage versus collector current

