HIGH CURRENT NPN SILICON TRANSISTOR

- SGS-THOMSON PREFERRED SALESTYPE
- NPN TRANSISTOR
- MAINTAINS GOOD SWITCHING PERFORMANCE EVEN WITHOUT NEGATIVE BASE DRIVE

APPLICATIONS

- LINEAR AND SWITCHING INDUSTRIAL EQUIPMENT

DESCRIPTION

The BUR52 is a silicon multiepitaxial planar NPN transistors in modified Jedec TO-3 metal case, intented for use in switching and linear applications in military and industrial equipment.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage $\left(\mathrm{I}_{\mathrm{E}}=0\right)$	350	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	250	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	10	V
I_{C}	Collector Current	60	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	80	A
I_{B}	Base Current	16	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	350	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	200	${ }^{\circ} \mathrm{C}$

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ісво	Collector Cut-off Current ($\mathrm{I}_{\mathrm{E}}=0$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CB}}=350 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CB}}=350 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\text {case }}=125{ }^{\circ} \mathrm{C}$			$\begin{gathered} 0.2 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iceo	Collector Cut-off Current ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {Ce }}=250 \mathrm{~V}$				1	mA
Iebo	Emitter Cut-off Current $(\mathrm{Ic}=0)$	$\mathrm{V}_{\mathrm{EB}}=7 \mathrm{~V}$				0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEO(sus)* }}$	Collector-Emitter Sustaining Voltage	$\mathrm{Ic}=200 \mathrm{~mA}$		250			V
Vebo	Emitter-base Voltage $(\mathrm{IC}=0)$	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$		10			V
$\mathrm{V}_{\mathrm{CE}(\text { sat) }}{ }^{*}$	Collector-emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=25 \mathrm{~A} \\ & \mathrm{I}=40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} \end{aligned}$		0.7	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE}(\text { sat) }}{ }^{*}$	Base-emitter Saturation Voltage	$\begin{aligned} & \mathrm{I} \mathrm{C}=25 \mathrm{~A} \\ & \mathrm{IC}=40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=4 \mathrm{~A} \end{aligned}$		1.5	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
hfE^{*}	DC Current Gain	$\begin{aligned} & \mathrm{IC}=5 \mathrm{~A} \\ & \mathrm{IC}=40 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$		100	
$\mathrm{I}_{\mathrm{s} / \mathrm{b}}$	Second Breakdown Collector Current	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}$	$\mathrm{t}=1 \mathrm{~s}$	17.5			A
\dagger_{T}	Transition-Frequency	$\begin{aligned} & \mathrm{IC}=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\text {CE }}=5 \mathrm{~V}$		10	16	MHz
ton	Turn-on Time	$\begin{aligned} & \mathrm{IC}=40 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=100 \mathrm{~V} \end{aligned}$	$\mathrm{I}_{\mathrm{B} 1}=4 \mathrm{~A}$		0.3	1	$\mu \mathrm{s}$
$\mathrm{t}_{\text {s }}$	Storage Time	$\mathrm{IC}=40 \mathrm{~A}$	$\mathrm{I}_{\mathrm{B} 1}=4 \mathrm{~A}$		1.2	2	$\mu \mathrm{s}$
t_{f}	Fall Time	$\mathrm{l}_{\mathrm{B} 2}=-4 \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}=100 \mathrm{~V}$		0.2	0.6	$\mu \mathrm{s}$
	Clamped $\mathrm{E}_{\mathrm{s} / \mathrm{b}}$ Collector Current	$\mathrm{V}_{\text {clamp }}=250 \mathrm{~V}$	$\mathrm{L}=500 \mu \mathrm{H}$	40			A

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%

TO-3 (version P) MECHANICAL DATA

DIM.	mm				inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	11.00	11.7	13.10	0.433		0.516
B	1.45	1.5	1.60	0.057		0.063
C	2.7		2.92	0.106		0.115
D	8.9		9.4	0.350		0.370
E	19.00		20.00	0.748		0.787
G	10.70	10.9	11.10	0.421	0.429	0.437
N	16.50	16.9	17.20	0.650	0.665	0.677
P	25.00		26.00	0.984		1.024
U	3.88		4.2	0.153		0.165
V	38.50		39.30	1.516		1.547

P003I

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics.
© 1997 SGS-THOMSON Microelectronics - Printed in Italy - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A

