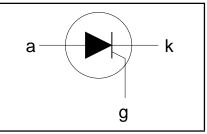
BT169W Series

GENERAL DESCRIPTION

Glass passivated, sensitive gate thyristor in a plastic envelope, suitable for surface mounting, intended for use in general purpose switching and phase control applications. This device is intended to be interfaced directly to microcontrollers, logic integrated circuits and other low power gate trigger circuits.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MAX.	MAX.	MAX.	MAX.	UNIT
V _{DRM} ,	BT169 Repetitive peak off-state voltages	BW 200	DW 400	EW 500	GW 600	V
V _{RRM} I _{T(AV)}	Average on-state	0.5	0.5	0.5	0.5	A
I _{T(RMS)} I _{TSM}	RMS on-state current Non-repetitive peak on-state current	0.8 8	0.8 8	0.8 8	0.8 8	A A


PINNING - SOT223

PIN	DESCRIPTION			
1	cathode			
2	anode			
3	gate			
tab	anode			

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.		M	AX.		UNIT
V _{drm} , V _{rrm}	Repetitive peak off-state voltages		-	B 200 ¹	D 400 ¹	E 500 ¹	G 600 ¹	v
I _{T(AV)}	Average on-state current	half sine wave; T₅₅ ≤ 112 °C	-		0.	63		A
I _{T(RMS)} I _{TSM}	RMS on-state current Non-repetitive peak on-state current	all conduction angles half sine wave; $T_i = 25 \degree C$ prior to surge	-			1		A
		t = 10 ms t = 8.3 ms	-			8 9		A A
l²t dl _⊤ /dt	I ² t for fusing Repetitive rate of rise of on-state current after triggering	t = 10 ms $I_{TM} = 2 \text{ A}; I_G = 10 \text{ mA};$ $dI_G/dt = 100 \text{ mA/}\mu\text{s}$	-		0.	32 50		A ² s A/μs
I _{GM} V _{GM} V _{RGM} P _{GM}	Peak gate current Peak gate voltage Peak reverse gate voltage Peak gate power		- - -		-	1 5 5 2		A V V W
$\begin{array}{c} P_{G(AV)}^{om} \\ T_{stg} \\ T_{j} \end{array}$	Average gate power Storage temperature Operating junction temperature	over any 20 ms period	- -40 -		1	.1 50 25		°℃ C

¹ Although not recommended, off-state voltages up to 800V may be applied without damage, but the thyristor may switch to the on-state. The rate of rise of current should not exceed 15 $A/\mu s$.

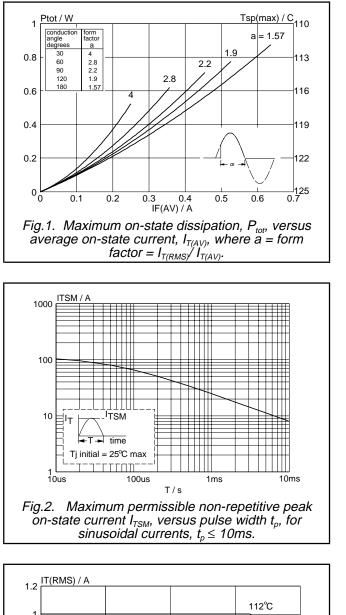
BT169W Series

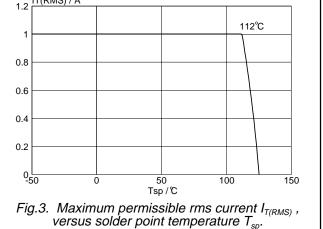
THERMAL RESISTANCES

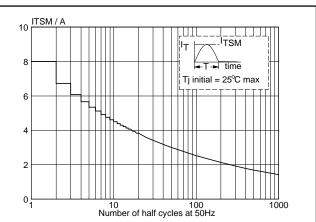
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
R _{th j-sp}	Thermal resistance junction to solder point		-	-	15	K/W
R _{th j-a}		pcb mounted, minimum footprint pcb mounted; pad area as in fig:14	-	156 70	-	K/W K/W

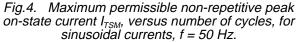
STATIC CHARACTERISTICS

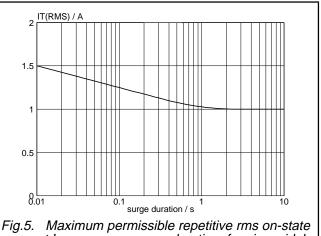
 $T_i = 25$ °C unless otherwise stated

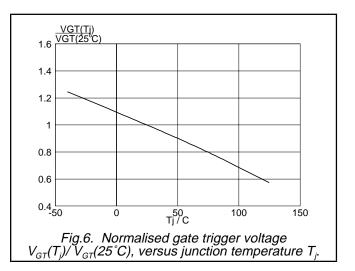

PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Gate trigger current	$V_{\rm D}$ = 12 V; I _T = 10 mA; gate open circuit	-	50	200	μA
Latching current	$V_{\rm D} = 12 \text{ V}; I_{\rm GT} = 0.5 \text{ mA}; R_{\rm GK} = 1 \text{ k}\Omega$	-	2	6	mA
Holding current	$V_{\rm D} = 12 \text{ V}; \text{ I}_{\rm GT} = 0.5 \text{ mA}; \text{ R}_{\rm GK} = 1 \text{ k}\Omega$	-	2	5	mA
On-state voltage	$I_T = 2 A$	-	1.35	1.5	V
Gate trigger voltage	$V_{\rm D} = 12$ V; $I_{\rm T} = 10$ mA; gate open circuit	-	0.5	0.8	V
	$V_{\rm D} = V_{\rm DRM(max)}; I_{\rm T} = 10 \text{ mA}; T_{\rm j} = 125 \text{ °C};$	0.2	0.3	-	V
Off-state leakage current	$V_D = V_{DRM(max)}; V_R = V_{RRM(max)}; T_i = 125 \ ^{\circ}C;$	-	0.05	0.1	mA
	Gate trigger current Latching current Holding current On-state voltage Gate trigger voltage	Gate trigger current Latching current Holding current On-state voltage Gate trigger voltage $V_D = 12 \text{ V}; \text{ I}_T = 10 \text{ mA}; \text{ gate open circuit}$ $V_D = 12 \text{ V}; \text{ I}_{GT} = 0.5 \text{ mA}; \text{ R}_{GK} = 1 \text{ k}\Omega$ $V_D = 12 \text{ V}; \text{ I}_{GT} = 0.5 \text{ mA}; \text{ R}_{GK} = 1 \text{ k}\Omega$ $I_T = 2 \text{ A}$ $V_D = 12 \text{ V}; \text{ I}_T = 10 \text{ mA}; \text{ gate open circuit}$ $V_D = 12 \text{ V}; \text{ I}_T = 10 \text{ mA}; \text{ gate open circuit}$ $V_D = 12 \text{ V}; \text{ I}_T = 10 \text{ mA}; \text{ gate open circuit}$	Gate trigger current Latching current Holding current $V_D = 12 V; I_T = 10 mA; gate open circuitV_D = 12 V; I_{GT} = 0.5 mA; R_{GK} = 1 k\OmegaV_D = 12 V; I_{GT} = 0.5 mA; R_{GK} = 1 k\OmegaI_T = 2 AV_D = 12 V; I_T = 10 mA; gate open circuitV_D = 12 V; I_T = 10 mA; gate open circuitV_D = 12 V; I_T = 10 mA; gate open circuitV_D = 12 V; I_T = 10 mA; gate open circuitV_D = 12 V; I_T = 10 mA; gate open circuitV_D = V_{DRM(max)}; I_T = 10 mA; T_j = 125 °C;Q = V_{DRM(max)}; V_R = V_{RRM(max)}; T_j = 125 °C;$	Gate trigger current Latching current Holding current $V_D = 12 V; I_T = 10 \text{ mA}; \text{ gate open circuit}$ $V_D = 12 V; I_{GT} = 0.5 \text{ mA}; R_{GK} = 1 \text{ k}\Omega$ $V_D = 12 V; I_{GT} = 0.5 \text{ mA}; R_{GK} = 1 \text{ k}\Omega$ $V_D = 12 V; I_{GT} = 0.5 \text{ mA}; R_{GK} = 1 \text{ k}\Omega$ $V_D = 12 V; I_{GT} = 0.5 \text{ mA}; R_{GK} = 1 \text{ k}\Omega$ $V_D = 12 V; I_{T} = 2 \text{ A}$ $V_D = 12 V; I_T = 10 \text{ mA}; \text{ gate open circuit}$ $V_D = 12 V; I_T = 10 \text{ mA}; \text{ gate open circuit}$ $V_D = 12 V; I_T = 10 \text{ mA}; T_j = 125 °C;$ $U_D = V_{DRM(max)}; V_T = V_{RRM(max)}; T_j = 125 °C;$ 50 2 2 2 0.05Off-state leakage current $V_D = V_{DRM(max)}; V_R = V_{RRM(max)}; T_j = 125 °C;$ 0.05	Gate trigger current Latching current Holding current $V_D = 12 V; I_T = 10 mA; gate open circuitV_D = 12 V; I_{GT} = 0.5 mA; R_{GK} = 1 k\Omega-50200V_D = 12 V; I_{GT} = 0.5 mA; R_{GK} = 1 k\Omega-26V_D = 12 V; I_{GT} = 0.5 mA; R_{GK} = 1 k\Omega-25On-state voltageI_T = 2A-1.351.5Gate trigger voltageV_D = 12 V; I_T = 10 mA; gate open circuit-0.50.8V_D = 12 V; I_T = 10 mA; gate open circuit-0.50.8V_D = V_{DRM(max)}; I_T = 10 mA; T_J = 125 °C;0.20.3-gate open circuitV_D = V_{DRM(max)}; V_R = V_{RRM(max)}; T_J = 125 °C;-0.050.1$

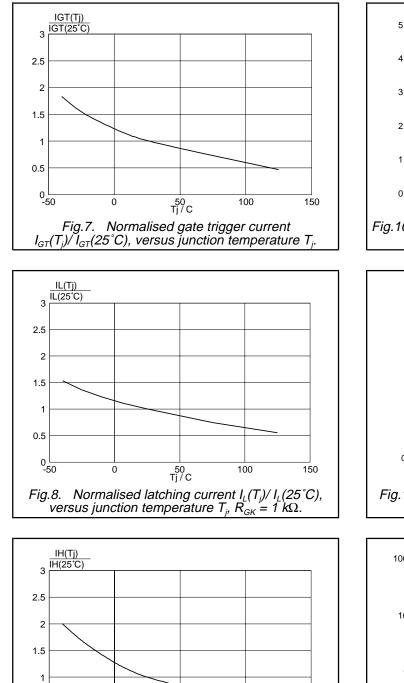

DYNAMIC CHARACTERISTICS

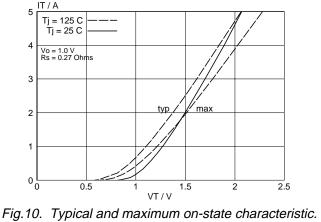

 $T_j = 25$ °C unless otherwise stated

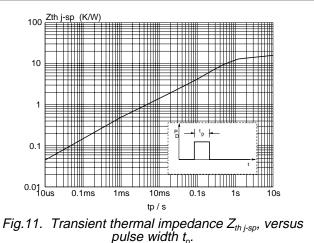

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
dV _D /dt	Critical rate of rise of off-state voltage	V_{DM} =67% $V_{DRM(max)}$; T _j = 125 °C; exponential waveform; R _{GK} = 1k Ω	-	25	-	V/µs
t _{gt}	Gate controlled turn-on time	$I_{TM} = 2 \text{ A}; V_D = V_{DRM(max)}; I_G = 10 \text{ mA};$ $dI_G/dt = 0.1 \text{ A}/\mu\text{s}$	-	2	-	μs
t _q	Circuit commutated turn-off time	$V_{D}^{"} = 67\% V_{DRM(max)}; T_{i} = 125 °C;$ $I_{TM} = 1.6 A; V_{R} = 35 V; dI_{TM}/dt = 30 A/\mu s;$ $dV_{D}/dt = 2 V/\mu s; R_{GK} = 1 k\Omega$	-	100	-	μs

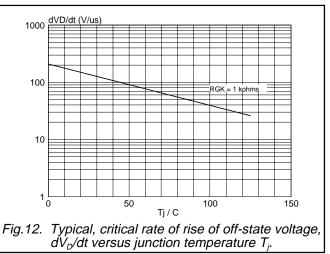

BT169W Series








Fig.5. Maximum permissible repetitive rms on-state current $I_{T(RMS)}$, versus surge duration, for sinusoidal currents, f = 50 Hz; $T_{sp} \le 112^{\circ}C$.



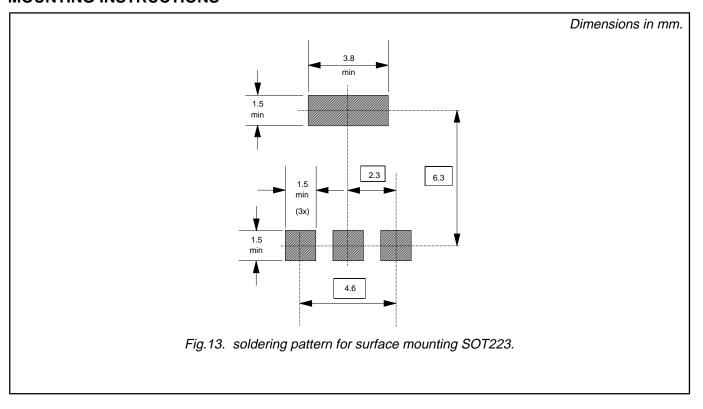
BT169W Series

0.5

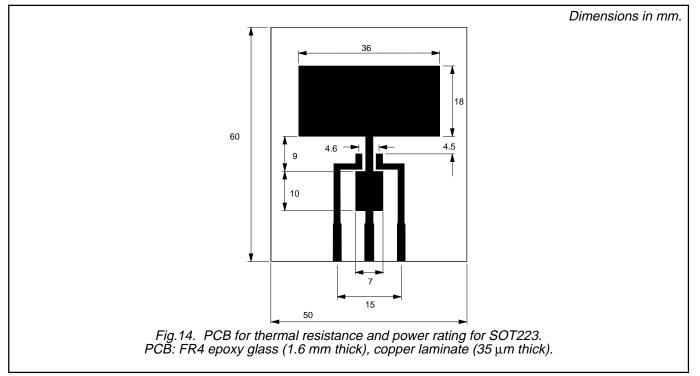
0└ -50

0

50 Ti/C

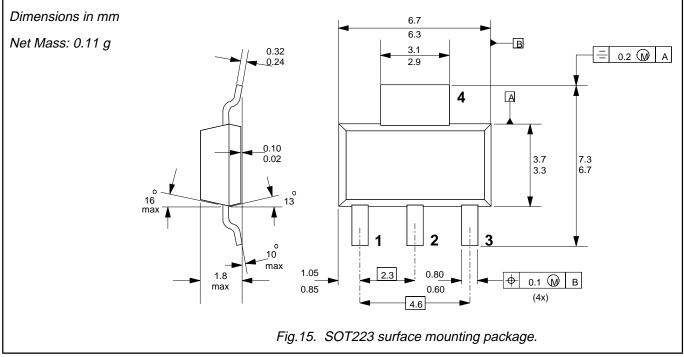

Fig.9. Normalised holding current $I_{H}(T_{j})/I_{H}(25^{\circ}C)$, versus junction temperature T_{j} , $R_{GK} = 1 \ k\Omega$.

100


150

BT169W Series

MOUNTING INSTRUCTIONS



PRINTED CIRCUIT BOARD

BT169W Series

MECHANICAL DATA

Notes

For further information, refer to Philips publication SC18 " SMD Footprint Design and Soldering Guidelines". Order code: 9397 750 00505.
Epoxy meets UL94 V0 at 1/8".

Thyristor		BT169W Series
logic level		

DEFINITIONS

Data sheet status			
Objective specification This data sheet contains target or goal specifications for product development.			
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.		
Product specification	This data sheet contains final product specifications.		
Limiting values			
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.			
Application information			

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1997

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.