May 1998

National Semiconductor

DS14C89A Quad CMOS Receiver

General Description

The DS14C89A, pin-for-pin compatible to the DS1489A/ MC1489A, ia a quad receiver designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). These devices translate levels conforming to EIA-232E and CCITT V.28 standards to TTL/CMOS logic levels.

The device is fabricated in low threshold CMOS metal gate technology. The device provides very low power consumption compared to their bipolar equivalents: 900 μ A (DS14C89A) versus 26 mA (DS1489A).

The DS14C89A provides on chip noise filtering which eliminates the need for external response control filter capacitors.

Connection Diagram

When replacing the DS1489A with the DS14C89A, the response control filter pins can be tied high, low, or not connected.

Features

- Meets EIA/TIA-232-E and CCITT V.28 Standards
- Failsafe Output High for Open Input
- LOW Power consumption
- On chip noise filter
- Available in SOIC Package

Input A V_{CC} DS14C89A/DS14C89A1 <u>3</u>Input D NO <u>12</u>NC Output A 1 Input B Output D 10 Input C NC Output B NC GND Output C DS011106-1

Order Number DS14C89AN, DS14C89AM, See NS Package Number M14A, N14A DS14C89A Quad CMOS Receiver

Absolute Maximum Ratings (Note 1)

.

 V_{CC}

Input Voltage

N Package

M Package

Lead Temp.

Receiver Output Voltage

Junction Temperature

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

 $\begin{array}{ll} \mbox{(Soldering 4 seconds)} & +260\mbox{`C} \\ \mbox{Storage Temp. Range} & -65\mbox{`C to } +150\mbox{`C} \\ \mbox{ESD Rating} \geq 1.8\mbox{ kV}, \mbox{Typically} \geq 2\mbox{ kV} \\ \mbox{(HMB, 1.5 k}\Omega, 100\mbox{ pF)} \end{array}$

+6V -30V to +30V (V_{cc}) +0.3V to GND-0.3V +0.3V to -30V

	Min	Max	Units
V_{CC} (GND = 0V)	+4.5	+5.5	V
Operating Free Air Te	emp. (T _A)		
DS14C89A	0	+75	°C

Electrical Characteristics

Continuous Power Dissipation @ +25°C (Note 2)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter		Conditions	Min	Тур	Max	Units
V _{TH}	Input High Threshold			1.3		2.7	V
V _{TL}	Input Low Threshold			0.5		1.9	V
V _{HY}	Typical Input Hysteresis				1.0		V
I _{IN}	Input Current	V _{IN} = +25V	$V_{\rm CC}$ = +4.5V to +5.5V	3.6		8.3	mA
		$V_{IN} = -25V$	-	-3.6		-8.3	mA
		$V_{IN} = +3V$	-	0.43		1.0	mA
		$V_{IN} = -3V$	-	-0.43		-1.0	mA
		V _{IN} = +15V	V _{CC} = 0V (Power-Off)	2.14		5.0	mA
		V _{IN} = -15V	(Note 4)	-2.14		-5.0	mA
		$V_{IN} = +3V$	-	0.43		1.0	mA
		$V_{IN} = -3V$	-	-0.43		-1.0	mA
V _{OH} Output High Voltage	V _{IN} = V _{TL} (min)	I _{OUT} = -3.2 mA	2.8	4.0		V	
			Ι _{ΟUT} = -20μΑ	3.5	4.7		V
V _{OL}	Output Low Voltage	$V_{IN} = V_{TH}$ (max) $I_{OUT} = +3.2$ mA			0.15	0.4	v
I _{cc}	Supply Current	No Load, V _{IN} = 2	2.7V or 0.5V		0.5	900	μA

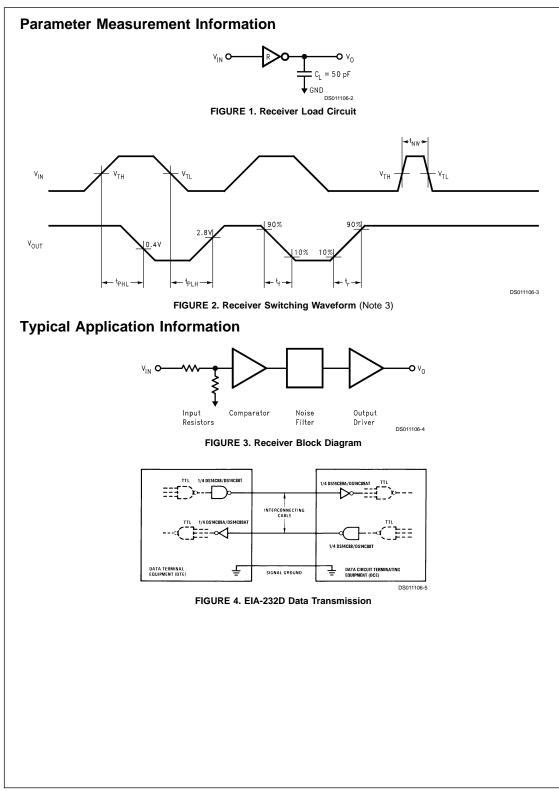
+150°C

1513 mW

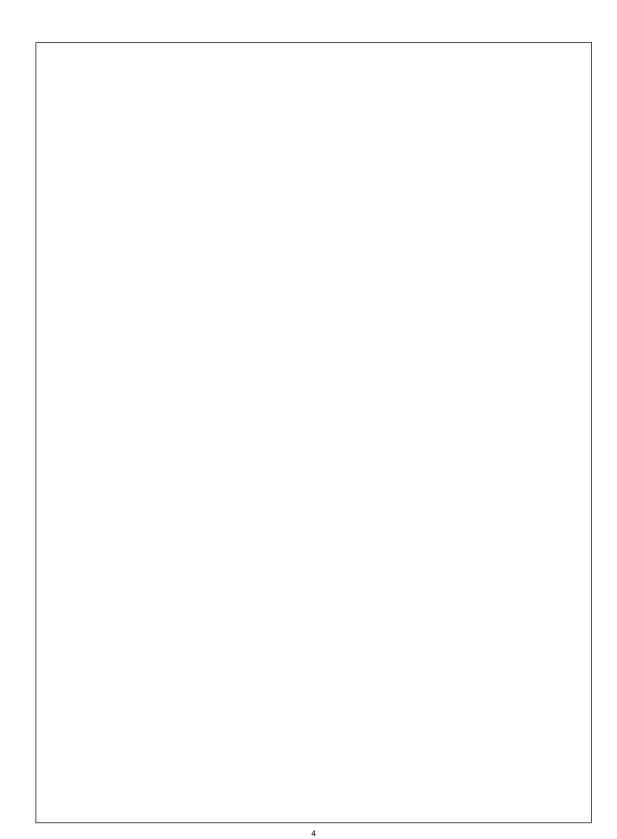
1063 mW

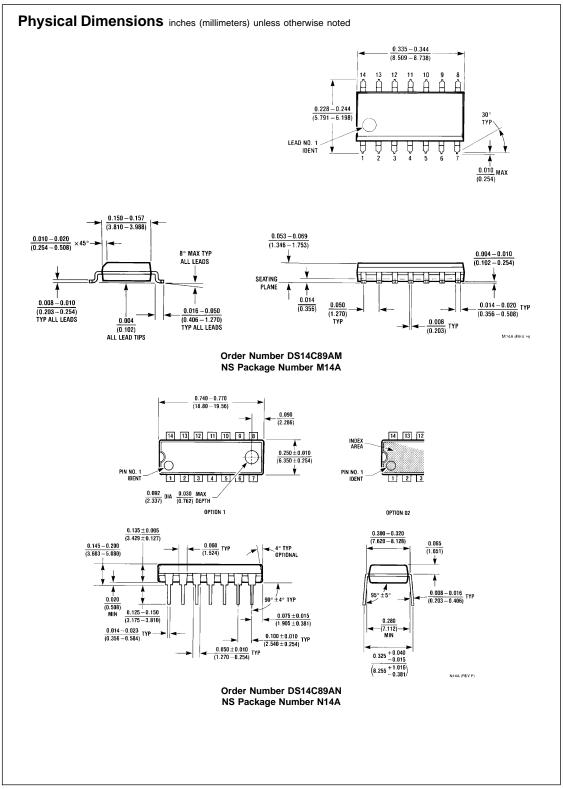
AC Electrical Characteristics (Note 3)

Over recommended operating conditions, unless otherwise specified, C₁ = 50 pF


Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Propagation Delay Low to High	Input Pulse Width ≥ 10 µs		3.5	6.5	μs
t _{PHL}	Propagation Delay High to Low	Input Pulse Width ≥ 10 µs		3.2	6.5	μs
t _{sk}	Typical Propagation Delay Skew			400		ns
t _r	Output Rise TIme			40	300	ns
t _f	Output Fall Time			40	300	ns
t _{nw}	Pulse Width assumed to be Noise				1.0	μs

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.


Note 2: Derate N Package 12.1 mW/°C, and M Package 8.5 mW/°C above +25°C.


Note 3: AC input waveforms for test purposes: $t_{\rm f}$ = $t_{\rm f}$ = 200 ns, V_{\rm IH} = +3V, V_L = -3V, f = 20 KHz.

Note 4: Under the power-off supply conditions it is assumed that the power supply potential drops to zero (0V) and is replaced by a low impedance or short circuit to ground.

www.national.com

www.national.com

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor	National Semiconductor	National Semiconductor	National Semiconducto
Corporation	Europe	Asia Pacific Customer	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	Response Group	Tel: 81-3-5620-6175
Tel: 1-800-272-9959	Email: europe.support@nsc.com	Tel: 65-2544466	Fax: 81-3-5620-6179
Fax: 1-800-737-7018	Deutsch Tel: +49 (0) 1 80-530 85 85	Fax: 65-2504466	
Email: support@nsc.com	English Tel: +49 (0) 1 80-532 78 32	Email: sea.support@nsc.com	
	Français Tel: +49 (0) 1 80-532 93 58		
ww.national.com	Italiano Tel: +49 (0) 1 80-534 16 80		

National does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.